Hacker Newsnew | past | comments | ask | show | jobs | submitlogin

> Because in my experience when I pass a value (not a reference), then I must borrow the value and cannot use it later in the calling procedure.

Ah, you are confused on terminology. Borrowing is a thing that only happens when you make references. What you are doing when you pass a non-copy value is moving it.

Generally, anything that is not copy you pass to a function should be a (non-mut) reference unless it's specifically needed to be something else. This allows you to borrow it in the callee, which means the caller gets it back after the call. That's the workflow that the type system works best with, thanks to autoref having all your functions use borrowed values is the most convenient way to write code.

Note that when you pass a value type to a function, in Rust that is always a copy. For non-copy types, that just means move semantics meaning you also must stop using it at the call site. You should not deal with this in general by calling clone on everything, but instead should derive copy on the types for which it makes sense (small, value semantics), and use borrowed references for the rest.



It is not possible then to pass a value (not a reference) and not implement or derive Copy or Clone, if I understand you correctly. That was my impression earlier. Other languages let you pass a value, and I just don't mutate that, if I can help it. I usually don't want to pass a reference, as that involves syntactical "work" when wanting to use the referenced thing in the callee. In many other languages I get that at no syntactical cost. I pass the thing by its name and I can use it in the callee and in the caller after the call.

What I would prefer is, that Rust only cares about whether I use it in the caller after the call, if I pass a mutable value, because in that case, of course it could be unsafe, if the callee mutates it.

Sometimes Copy cannot be derived and then one needs to implement it or Clone. A few months ago I used Rust again for a short duration, and I had that case. If I recall correctly it was some Serde struct and Copy could not be derived, because the struct had a String or &str inside it. That should a be fairly common case.


You can pass a value that is neither copy or clone, but then it gets moved into the callee, and is no longer available in the caller.

Note that calling by value is expensive for large types. What those other languages do is just always call by reference, which you seem to confuse for calling by value.

Rust can certainly not do what you would prefer. In order to typecheck a function, Rust only needs the code of that function, and the type defitions of everything else, the contents of the functions don't matter. This is a very good rule, which makes code much easier to read.


Is it expensive in Rust? Normally only data in stack gets copied. Heap data is untouched


Yes, but if you have a large value type it will be on the stack unless you manually box it. Passing by value can get quite expensive quite fast, especially if the value keeps being passed up and down the call chain.


Is this really true? What do you mean by value types? The types that implement copy or any struct types? Because I think struct types only get moved


Move and copy are both the same operation under the hood, move just means that the old version is marked invalid and not available for use anymore.

For large structs (or enums), move and copy both compile into memcpy. If the structures are large, this can take a lot of time.


Yes, Rust will not automatically turn a value into a reference for you. A reference is the semantic you desire. If you have a value, you’re gonna have to toss & on it. That’s the idiomatic way to do this, not to pass a value and clone it.

&str is Copy, String is not.


> Other languages let you pass a value, and I just don't mutate that, if I can help it

How do they do that without either taking a reference or copying/cloning automatically for you? Would be helpful if you provide an example.


I did not state, that they don't automatically copy or clone things.

I might be wrong what they actually do though. It seems I merely dislike the need to specify & for arguments and then having to deal with the fact, that inside procedures I cannot treat them as values, but need to stay aware, that they are merely references.


C++ auto copies as well, it's just a feature of value semantics. References must be taken manually - versus Java or C#, where we assume reference and then have to explicitly say copy. Rust, I believe, usually moves by default - not copy, but close - for most types.

The nice thing about value semantics is they are very safe and can be very performant. Like in PHP, if we take array that's a copy. But not really - it's secretly COW under the hood. So it's actually very fast if we don't mutate, but we get the safety of value semantics anyway.


Rust will transparently copy values for types that declare the Copy trait. But the default is move which is probably what C++ would have chosen had they had the 30+ years of language research to experiment with that Rust did + some other language to observe what worked and what didn't.


The pattern you're looking for is:

``` fn operate_on_a(a: A) -> A { // do whatever as long as this scope still owns A a } ```




Consider applying for YC's Winter 2026 batch! Applications are open till Nov 10

Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: