> I see this is fallacy, there are a ton of industrial processes that use a ton of power just to produce heat. A great early use case for fusion will directly use the heat for these industrial processes. For example, aluminum requires ~14-17MWh to produce 1 ton... If you use the heat directly you reduce your processes inefficiency by removing the conversions: heat to steam to electric to heat.
The other guy was correct while you are the one who posted the fallacy. If using heat from nuclear sources to drive aluminum production were feasible, people would already be doing it using heat from HTGR reactors rather than waiting for nuclear fusion reactors to be made. The reason it is not feasible is because the heat is an output, not an input. The actual input is electricity, which is what drives the reaction. The 940–980°C temperatures reached during the reaction are from the electricity being converted into heat from resistive losses.
It should be noted that production nuclear fusion reactors would be even more radioactive than nuclear fission reactors in terms of total nuclear waste production by weight. The only reason people think otherwise is that the hypothetical use of helium-3 fuel would avoid it, but getting enough helium-3 fuel to power even a test reactor is effectively an impossibility. There are many things that are hypothetically attainable if all people in the world decide to do it. The permanent elimination of war, crime and poverty are such things. Obtaining helium-3 in the quantity needed for a single reactor is not.
However, the goal of powering the Hall–Héroult process from a nuclear fusion reactor is doable. Just use solar panels. Then it will be powered by the giant fusion reactor we have in the sky. You would want to add batteries to handle energy needs when the sun is not shining or do a grid tie connection and let the grid operator handle the battery needs.
Finally, industrial processes that actually need heat at high temperatures (up to around 950°C if my searches are accurate) as input could be served by HTGR reactors. If they are not already using them, then future fusion reactors will be useless for them, since there is no future in sight where a man made fusion reactor is a cheaper energy source than a man made fission reactor. Honestly, I suspect using solar panels to harness energy from the giant fusion reactor in the sky is a more cost effective solution than the use of any man-made reactor.
> The other guy was correct while you are the one who posted the fallacy. If using heat from nuclear sources to drive aluminum production were feasible,
Aluminum reduction is electrochemical, not thermochemical. Yes, the pots are hot, but they are kept hot by resistive dissipation as the alumina is electrolysed.
(There is some chemical energy contributed from oxidation of the carbon electrode.)
Somewhere there was an excellent blog post that I lost the link to that explains that fusion and nuclear have basically the same requirements for energy extraction. You can therefore estimate the ideal cost of a perfect fusion reactor and zero out the cost of the generation side and get a rough estimate of the lowest possible cost for fusion with current technology. I think that put you at somewhere near the 20c mark. Solar is 4-5c and going down, it’s hard to beat that.
Also you have to be careful when comparing solar to fusion because there are significant lifecycle costs on fusion that are not present in solar. So you have to take that into account when calculating total cost
This is why I think the only fusion approach that possibly has a chance is Helion's, since it avoids the turbines of the heat -> electricity approach that fission and DT fusion use.
The other guy was correct while you are the one who posted the fallacy. If using heat from nuclear sources to drive aluminum production were feasible, people would already be doing it using heat from HTGR reactors rather than waiting for nuclear fusion reactors to be made. The reason it is not feasible is because the heat is an output, not an input. The actual input is electricity, which is what drives the reaction. The 940–980°C temperatures reached during the reaction are from the electricity being converted into heat from resistive losses.
It should be noted that production nuclear fusion reactors would be even more radioactive than nuclear fission reactors in terms of total nuclear waste production by weight. The only reason people think otherwise is that the hypothetical use of helium-3 fuel would avoid it, but getting enough helium-3 fuel to power even a test reactor is effectively an impossibility. There are many things that are hypothetically attainable if all people in the world decide to do it. The permanent elimination of war, crime and poverty are such things. Obtaining helium-3 in the quantity needed for a single reactor is not.
However, the goal of powering the Hall–Héroult process from a nuclear fusion reactor is doable. Just use solar panels. Then it will be powered by the giant fusion reactor we have in the sky. You would want to add batteries to handle energy needs when the sun is not shining or do a grid tie connection and let the grid operator handle the battery needs.
Finally, industrial processes that actually need heat at high temperatures (up to around 950°C if my searches are accurate) as input could be served by HTGR reactors. If they are not already using them, then future fusion reactors will be useless for them, since there is no future in sight where a man made fusion reactor is a cheaper energy source than a man made fission reactor. Honestly, I suspect using solar panels to harness energy from the giant fusion reactor in the sky is a more cost effective solution than the use of any man-made reactor.