Physicist here. The superconductivity in layered graphene is indeed surprisingly strange, but this popular article may not do it justice. Here are some older articles on the same topic that may be more informative:
Let me briefly say why some reasons this topic is so interesting. Electrons in a crystal always have both potential energy (electrical repulsion) and kinetic energy (set by the atomic positions and orbitals). The standard BCS theory of superconductivity only works well when the potential energy is negligible, but the most interesting superconductors --- probably including all high temperature ones like the cuprates --- are in the regime where potential energy is much stronger than kinetic energy. These are often in the class of "unconventional" superconductors where vanilla BCS theory does not apply. The superconductors in layered (and usually twisted) graphene lie in that same regime of large potential/kinetic energy. However, their 2d nature makes many types of measurements (and some types of theories) much easier. These materials might be the best candidate available to study to get a handle on how unconventional superconductivity "really works". (Besides superconductors, these same materials have oodles of other interesting phases of matter, many of which are quite exotic.)
Also physicist here. I've worked on conventional superconductors, but never on unconventional ones. Last I heard, it was believed to be mediated by magnons (rather than phonons). Who claims it is due to Coulomb interaction?
https://www.quantamagazine.org/how-twisted-graphene-became-t...,
https://www.quantamagazine.org/a-new-twist-reveals-supercond....
Let me briefly say why some reasons this topic is so interesting. Electrons in a crystal always have both potential energy (electrical repulsion) and kinetic energy (set by the atomic positions and orbitals). The standard BCS theory of superconductivity only works well when the potential energy is negligible, but the most interesting superconductors --- probably including all high temperature ones like the cuprates --- are in the regime where potential energy is much stronger than kinetic energy. These are often in the class of "unconventional" superconductors where vanilla BCS theory does not apply. The superconductors in layered (and usually twisted) graphene lie in that same regime of large potential/kinetic energy. However, their 2d nature makes many types of measurements (and some types of theories) much easier. These materials might be the best candidate available to study to get a handle on how unconventional superconductivity "really works". (Besides superconductors, these same materials have oodles of other interesting phases of matter, many of which are quite exotic.)