Hacker Newsnew | past | comments | ask | show | jobs | submitlogin

Is there any way to deduce which invariance gives which conservation? I mean for example: how can you tell that time invariance is the one paired with conservation of energy? Why is e.g. time invariance not paired with momentum, current, or anything else, but specifically energy?

I know that I can remember momentum is paired with translation simply because there's both the angular momentum and the non-angular momentum one and in space you have translation and rotation, so for time energy is the only one that's left over, but I'm not looking for a trick to remember it, I'm looking for the fundamental reason, as well as how to tell what will be paired with some invariance when looking at some other new invariance



The conserved quantity is derived from Noether's theorem itself. One thing that is a bit hairy is that Noether's theorem only applies to a continuous, smooth (physical -> there is some wiggle room here) space.

When deriving the conservation of energy from Noether's theorem you basically say that your Lagrangian (which is just a set of equations that describes a physical system) is invariant over time. When you do that you automatically get that energy is conserved. Each invariant produces a conserved quantity as explained in parent comment when you apple a specific transformation that is supposed to not change the system (i.e remain invariant).

Now in doing this you're also invoking the principle of least action (by using Lagrangians to describe the state of a physical system) but that is a separate topic.


The key point is that energy, momentum, and angular momentum are additive constants of the motion, and this additivity is a very important property that ultimately derives from the geometry of the space-time in which the motion takes place.

> Is there any way to deduce which invariance gives which conservation?

Yes. See Landau vol 1 chapter 2 [1].

> I'm looking for the fundamental reason, as well as how to tell what will be paired with some invariance when looking at some other new invariance

I'm not sure there is such a "fundamental reason", since energy, momentum, and angular momentum are by definition the names we give to the conserved quantities associated with time, translation, and rotation.

You are asking "how to tell what will be paired with some invariance" but this is not at all obvious in the case of conservation of charge, which is related to the fact that the results of measurements do not change when all the wavefunctions are shifted by a global phase factor (which in general can depend on position).

I am not aware of any way to guess or understand which invariance is tied to which conserved quantity other than just calculating it out, at least not in a way that is intuitive to me.

[1] https://ia803206.us.archive.org/4/items/landau-and-lifshitz-...


But momentum is also conserved over time, as far as I know 'conservation' of all of these things always means over time.

"In a closed system (one that does not exchange any matter with its surroundings and is not acted on by external forces) the total momentum remains constant."

That means it's conserved over time, right? So why is energy the one associated with time and not momentum?


Conservation normally means things don't change over time just because in mechanics time is the go to external parameter to study the evolution of a system, but it's not the only one, nor the most convenient in some cases.

In Hamiltonian mechanics there is a 1:1 correspondence between any function of the phase space (coordinates and momenta) and one-parameter continous transformations (flows). If you give me a function f(q,p) I can construct some transformation φ_s(q,p) of the coordinates that conserves f, meaning d/ds f(φ_s(q, p)) = 0. (Keeping it very simple, the transformation consists in shifting the coordinates along the lines tangent to the gradient of f.)

If f(q,p) is the Hamiltonian H(q,p) itself, φ_s turns out to be the normal flow of time, meaning φ_s(q₀,p₀) = (q(s), p(s)), i.e. s is time and dH/dt = 0 says energy is conserved, but in general f(q,p) can be almost anything.

For example, take geometric optics (rays, refraction and such things): it's possible to write a Hamiltonian formulation of optics in which the equations of motion give the path taken by light rays (instead of particle trajectories). In this setting time is still a valid parameter but is most likely to be replaced by the optical path length or by the wave phase, because we are interested in steady conditions (say, laser turned on, beam has gone through some lenses and reached a screen). Conservation now means that quantities are constants along the ray, an example may be the frequency/color, which doesn't change even when changing between different media.


my understandinf is that conservation of momentum does not mean momentum is conserved as time passes. it means if you have a (closed) system in a certain configuration (not in an external field) and compute the total momentum, the result is independent of the configuration of the system.


It certainly means that momentum is conserved as time passes. The variation of the total momentum of a system is equal to the impulse, which is zero if there are no external fields.


In retrospect: the earliest recognition of a conserved quantity was Kepler's law of areas. Isaac Newton later showed that Kepler's law of areas is a specific instance of a property that obtains for any central force, not just the (inverse square) law of gravity.

About symmetry under change of orientation: for a given (spherically symmetric) source of gravitational interaction the amount of gravitational force is the same in any orientation.

For orbital motion the motion is in a plane, so for the case of orbital motion the relevant symmetry is cilindrical symmetry with respect to the plane of the orbit.

The very first derivation that is presented in Newton's Principia is a derivation that shows that for any central force we have: in equal intervals of time equal amounts of area are swept out.

(The swept out area is proportional to the angular momentum of the orbiting object. That is, the area law anticipated the principle of conservation of angular momentum)

A discussion of Newton's derivation, illustrated with diagrams, is available on my website: http://cleonis.nl/physics/phys256/angular_momentum.php

The thrust of the derivation is that if the force that the motion is subject to is a central force (cilindrical symmetry) then angular momentum is conserved.

So: In retrospect we see that Newton's demonstration of the area law is an instance of symmetry-and-conserved-quantity-relation being used. Symmetry of a force under change of orientation has as corresponding conserved quantity of the resulting (orbiting) motion: conservation of angular momentum.

About conservation laws:

The law of conservation of angular momentum and the law of conservation of momentum are about quantities that are associated with specific spatial characteristics, and the conserved quantity is conserved over time.

I'm actually not sure about the reason(s) for classification of conservation of energy. My own view: we have that kinetic energy is not associated with any form of keeping track of orientation; the velocity vector is squared, and that squaring operation discards directional information. More generally, Energy is not associated with any spatial characteristic. Arguably Energy conservation is categorized as associated with symmetry under time translation because of absence of association with any spatial characteristic.




Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: