Lead-free through-hole soldering is easy and practical. Unfortunately, for SMT prototyping (including reflow soldering), lead-free work is no longer that easy. Another problem, even in through-hole devices, is when you have large metal parts - a tough problem for RF/microwave circuits full of SMA and BNC connectors, backed by 1 or even 2 layers of solid ground planes, providing excellent a heatsink and a lot of cursing during work and rework. With lead-free solder, I found the iron needs to be cranked up to 420°C for a usable experience (but a larger iron tip may reduce that to a more reasonable level), and I don't know what temperature does it take to desolder them.
The last time I checked, low-temperature bismuth-tin alloy is only available as solder paste, unfortunately not available as flux-core solder wires (they're not really a good choice for connectors to begin with as the alloy is brittle, but I only need it to survive before the next prototype...)
The last time I checked, low-temperature bismuth-tin alloy is only available as solder paste, unfortunately not available as flux-core solder wires (they're not really a good choice for connectors to begin with as the alloy is brittle, but I only need it to survive before the next prototype...)