Hacker Newsnew | past | comments | ask | show | jobs | submitlogin

To nitpick and to show a cool lambda calculus thing, you can deconstruct booleans if you define booleans and if statements the following way, using only pure functions.

  def TRUE(a, b):
    return a

  def FALSE(a, b):
    return b

  def IF(cond, a, b):
    return cond(a, b)

  assert IF(TRUE, 1, 2) == 1
  assert IF(FALSE, 1, 2) == 2
This gives you the conditional statement in most languages ("cond ? a : b" or "a if cond else b").


You can do this same trick with any algebraic type, honestly (modulo lazyness):

    ## type Silly = Foo | Bar Int | Qux String Silly

    ## Constructors

    def Foo(onFoo, onBar, onQux):
        return onFoo()

    def Bar(arg0):
        return lambda onFoo, onBar, onQux: onBar(arg0)

    def Qux(arg0, arg1):
        return lambda onFoo, onBar, onQux: onQux(arg0, arg1)

    ## Values of Silly type are Foo, Bar(x) and Qux(x, y)

    ## Destructor

    def match_Silly(silly, onFoo, onBar, onQux):
        return silly(onFoo, onBar, onQux)
You can make a whole language on top of that if you don't mind effectively disabling your CPU's branch predictor.


Church encoding is pretty cool, yes! It encodes Booleans such that »if == id«. Likewise, natural numbers are essentially counting for-loops: 3 f x = f (f (f x)), so »for == id«.

I had to work with this for a while because I wanted to implement Hello World in Javascript. https://github.com/quchen/lambda-ski/blob/master/helloworld/...




Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: