Hacker Newsnew | past | comments | ask | show | jobs | submitlogin

> Large cardinal axioms are essential to the study of the relative consistency strength of mathematical theories. You personally might not care about them, but accommodating them is not a negotiable detail for anything that purports to be useful in the study of foundations.

It's my understanding that some larger cardinals are needed for foundations, but since the foundations problem was "solved" future work on large cardinals has continued, and that is more "more set theory for set theory's sake", than something needed to accommodate math other "regular" mathematicians are doing.

(With the possible exception of the Grothendiek and Voevodsky line of problems perhaps as the article relates --- separate and ancillary to Voevodsky's desire for a proof checker, and also separate to whether or not categorical methods alone can suffice.)

I actually don't know of type theory having "ways around this". My understanding is that while type theory doesn't appear to face fundamental obstacles here, set theory "has the lead" in making large cardinals (or their equivalents) due to being older, and the type theorists relative disinterest in this area has meant the gap is not closing.



Consider applying for YC's Fall 2025 batch! Applications are open till Aug 4

Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: