“ e.g. I can predict the result of sin(1000000τ) will be 0, without anything physical/virtual having to wiggle up and down a million times. “
This seems to still involves ‘a program’ in that there are foundational mathematical principals that build your confidence/logic that the periodicity of sin(x) is so well defined that any even integer multiple of pi will be zero. e.g. you could write out the logical ‘programatic’ steps that would also teach a math newbie how to make the conclusion you just made about the sin() function.
I agree, but such a "program" wouldn't necessarily look/act anything like the "program" 'sin(1000000τ)'.
What's interesting about systems like Turing machines is that the "program" is a specific, isolated thing like a tape of symbols. In contrast, those "foundational mathematical principles" you mention are more of a diffuse web, with lots of interchangable pieces, all mixed up with unrelated facts. This gives lots of different ways to arrive at the answer. With Turing-complete systems, we always have to come back to the code.
This seems to still involves ‘a program’ in that there are foundational mathematical principals that build your confidence/logic that the periodicity of sin(x) is so well defined that any even integer multiple of pi will be zero. e.g. you could write out the logical ‘programatic’ steps that would also teach a math newbie how to make the conclusion you just made about the sin() function.