LLMs don’t, but who said AGI should come from LLMs alone. When I ask ChatGPT about something “we” worked on months ago, it “remembers” and can continue on the conversation with that history in mind.
I’d say, humans are also bound to promoting sessions in that way.
Last time I used ChatGPT 'memory' feature it got full very quickly. It remembered my name, my dog's name and a couple tobacco casing recipes he came up with. OpenAI doesn't seem to be using embeddings and a vector database, just text snippets it injects in every conversation. Because RAG is too brittle ? The same problem arises when composing LLM calls. Efficient and robust workflows are those whose prompts and/or DAG were obtained via optimization techniques. Hence DSPy.
Consider the following use case: keeping a swimming pool water clean. I can have a long running conversation with a LLM to guide me in getting it right. However I can't have a LLM handle the problem autonomously. I'd like to have it notify me on its own "hey, it's been 2 days, any improvement? Do you mind sharing a few pictures of the pool as well as the ph/chlorine test results ?". Nothing mind-boggingly complex. Nothing that couldn't be achieved using current LLMs. But still something I'd have to implement myself and which turns out to be more complex to achieve than expected. This is the kind of improvement I'd like to see big AI companies going after rather than research-grade ultra smart AIs.
Do you have a source for (1)? I see a lot more CVEs for (desktop) Chrome than for (any) Safari. Also, a native version of Chrome doesn't exist yet on iOS, so how can you say it has a better security record?